An H(div)-Conforming Finite Element Method for the Biot Consolidation Model
نویسندگان
چکیده
منابع مشابه
Pseudo-conforming Hdiv polynomial finite elements on quadrilaterals and hexahedra
The aim of this paper is to present a new class of mixed finite elements on quadrilaterals and hexahedra where the approximation is polynomial on each element K. The degrees of freedom are the same as those of classical mixed finite elements. However, in general, with this kind of finite elements, the resolution of second order elliptic problems leads to non conforming approximations. In the pa...
متن کاملA Non-Conforming Finite Element Method for Convex Optimization Problems
The goal of this paper is the analysis of a non-conforming finite element method for convex variational problems in the presence of the Lavrentiev phenomenon for which conforming finite element methods are known to fail. By contrast, it is shown that the Crouzeix–Raviart finite element discretization always converges to the correct minimizer.
متن کاملA conforming finite element method for overlapping and nonmatching grids
In this paper we propose a finite element method for nonmatching overlapping grids based on the partition of unity. Both overlapping and nonoverlapping cases are considered. We prove that the new method admits an optimal convergence rate. The error bounds are in terms of local mesh sizes and they depend on neither the overlapping size of the subdomains nor the ratio of the mesh sizes from diffe...
متن کاملExplicit error bounds in a conforming finite element method
The goal of this paper is to define a procedure for bounding the error in a conforming finite element method. The new point is that this upper bound is fully explicit and can be computed locally. Numerical tests prove the efficiency of the method. It is presented here for the case of the Poisson equation and a first order finite element approximation.
متن کاملA nonconforming finite element method for the Biot's consolidation model in poroelasticity
A stable finite element scheme that avoids pressure oscillations for a three-field Biot’s model in poroelasticity is considered. The involved variables are the displacements, fluid flux (Darcy velocity), and the pore pressure, and they are discretized by using the lowest possible approximation order: Crouzeix-Raviart finite elements for the displacements, lowest order Raviart-Thomas-Nédélec ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian Journal on Applied Mathematics
سال: 2019
ISSN: 2079-7362,2079-7370
DOI: 10.4208/eajam.170918.261218